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Injection of carbon dioxide (CO2) into geological formations is widely regarded
as a promising tool for reducing global atmospheric CO2 emissions. To evaluate
injection scenarios, estimate reservoir capacity and assess leakage risks, an accurate
understanding of the subsurface spreading and migration of the plume of mobile
CO2 is essential. Here, we present a complete solution to a theoretical model for
the subsurface migration of a plume of CO2 due to natural groundwater flow and
aquifer slope, and subject to residual trapping. The results show that the interplay
of these effects leads to non-trivial behaviour in terms of trapping efficiency. The
analytical nature of the solution offers insight into the physics of CO2 migration, and
allows for rapid, basin-specific capacity estimation. We use the solution to explore the
parameter space via the storage efficiency, a macroscopic measure of plume migration.
In a future study, we shall incorporate CO2 dissolution into the migration model and
study the importance of dissolution relative to capillary trapping and the impact of
dissolution on the storage efficiency.
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1. Introduction
Injection of carbon dioxide (CO2) into geological formations is widely regarded

as a promising tool for reducing global atmospheric CO2 emissions (see e.g. Bachu,
Gunter & Perkins 1994; Lackner 2003; Orr Jr 2004; Schrag 2007). To evaluate
injection scenarios, estimate reservoir capacity and assess leakage risks, an accurate
understanding of the subsurface migration of the plume of mobile CO2 is essential.
Much study has been done on this problem quite recently, including both theoretical
modelling and numerical simulation. Numerical studies include Pruess & Garcı́a
(2002), Kumar et al. (2005) and Juanes et al. (2006), among many others; we review
theoretical studies in more detail below. Here, we present a complete solution to a
theoretical model for the subsurface migration of a plume of CO2. The analytical
nature of the solution offers insight into the physics of CO2 migration and allows
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for rapid, basin-specific estimation of, for example, migration distance and reservoir
capacity.

1.1. Saline aquifers and storage security

Deep saline aquifers are among the geological formations well suited for CO2 storage
(see e.g. Bachu et al. 1994; Orr Jr 2004). These are permeable layers of, for example,
limestone or cemented sand that are saturated with salty groundwater and bounded
above and below by layers of much less permeable rock such as clay or anhydrite.
Deep saline aquifers are located roughly 1–3 km underground, are thin relative to
their in-plane dimensions, and are horizontal or weakly sloped. Many have a slow
natural groundwater through-flow.

While the properties of CO2 at aquifer conditions vary with temperature and
pressure, the CO2 will always be less dense and less viscous than the groundwater,
making it buoyant and mobile in the aquifer. The injected plume of CO2 will then
spread upwards against the top boundary of the aquifer while migrating due to a
combination of groundwater flow and aquifer slope.

Storage security (or, inversely, risk of leakage) is a primary concern. When both
horizontal and upwards migration of mobile CO2 are blocked by an impermeable
layer, the CO2 is said to be structurally trapped. Structural trapping is effective but
unreliable, as the CO2 remains mobile: a pre-existing well or the activation of a
fault could lead to leakage into shallower formations. Several physical mechanisms
serve to immobilize the CO2 and thus increase storage security. The isolation and
immobilization of small blobs of residual CO2 in the pore space of the rock at the
trailing edge of the plume is known as capillary trapping. Capillary trapping occurs in
flow through a porous medium when a non-wetting fluid (here, CO2) is displaced by
a wetting one (here, groundwater). Capillary trapping is an ideal mechanism for the
geological storage of CO2 because the trapped gas is immobile and distributed over
a large area, greatly decreasing the risk of leakage and enhancing the effectiveness
of CO2 dissolution (Kumar et al. 2005; Juanes et al. 2006). It is well known that
both residual and mobile CO2 will gradually dissolve into the groundwater: this
offers excellent storage security, but CO2 is only weakly soluble in groundwater and
diffusion-driven dissolution acts on long time scales relative to plume migration.
However, it is well known that dissolution is greatly enhanced by a Rayleigh–Bénard
instability that drives convective mixing (Ennis-King & Paterson 2005). The combined
effect of capillary trapping and dissolution will be considered in a future study. Once
dissolved, CO2 can precipitate onto the aquifer rock as carbonate mineral: this occurs
over very long time scales, and is unlikely to influence plume migration.

1.2. Previous study

The injection and subsequent migration of mobile, buoyant CO2 in a saline aquifer
falls into a broad class of fluid-mechanics problems known as gravity currents, wherein
a finite amount or known flux of one fluid is released or injected into a second, ambient
fluid. Since the introduced fluid has a different density than the ambient fluid, the
flow is governed by the balance of buoyancy and viscous dissipation.

Gravity currents have been well studied. Huppert (1982) investigated several cases
of a fluid being released or injected into a less-dense and less-viscous ambient fluid
on a flat surface for both planar and axisymmetric geometries (see references therein
for earlier study on gravity currents). The relevant model for a gravity current in
a porous medium has been known for quite some time: Bear (1972), for example,
derives a sharp-interface model for the displacement of one fluid by another fluid of
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different density and viscosity in a confined porous layer, including background flow,
formation tilt and buoyant spreading (Bear 1972, p. 535, equation (9.5.64)).

Barenblatt, Entov & Ryzhik (1972) and Kochina, Mikhailov & Filinov (1983)
studied the spreading of a mound of fluid surrounded by a less-dense and less-viscous
ambient fluid in a porous medium, showing that the problem was asymptotically
self-similar even when capillary trapping was included. Dussan V & Auzerais (1993)
studied the buoyant spreading of fluid from a line source into a confined porous layer
containing a denser ambient fluid. Huppert & Woods (1995) studied the buoyant
spreading and along-slope migration of dense fluid in an unbounded porous layer.

More recently, Nordbotten, Celia & Bachu (2005) and Nordbotten & Celia (2006)
studied the injection of CO2 into a saline aquifer from a single well, giving a radially
symmetric analytical solution for the case where injection-driven flow dominates
buoyancy. Verdon & Woods (2007) considered a similar model in a different
context, developing an analytical solution for injection in the planar geometry. Hesse,
Tchelepi & Orr Jr (2006) studied the post-injection spreading and up-slope migration
of a plume of CO2, including capillary trapping as in Kochina et al. (1983). Hesse
et al. (2007) studied the planar post-injection spreading of a plume of CO2 and
gave early- and late-time similarity solutions for buoyant spreading in a horizontal
aquifer without capillary trapping, starting from a rectangular or ‘step’ initial shape.
Hesse, Orr Jr & Tchelepi (2008) introduced capillary trapping to this model, showing
that the early-time spreading behaviour remains self-similar when capillary trapping
is included, and gave scaling results for the late-time spreading behaviour. Hesse
et al. (2008) also considered the limit of up-slope migration with negligible spreading,
starting from a step initial shape and including capillary trapping; they derived
a semi-analytical solution in this limit, and an analytical solution for the case of
negligible viscosity contrast.

Juanes & MacMinn (2008) and Juanes, MacMinn & Szulczewski (2010) considered
CO2 migration in a horizontal aquifer with a net groundwater through-flow, providing
an explicit analytical solution for post-injection migration when buoyant spreading is
negligible. Their solution included capillary trapping, as well as the reduced mobility
of water in the region containing trapped CO2, and also accounted for the tongued
shape of the plume at the end of injection. This is important because capillary
trapping causes the size of the plume at any time to depend strongly on the details
of its evolution up to that time, and therefore the end-of-injection plume shape has
a strong effect on the plume evolution for all time despite the diffusive mathematical
character of the model (MacMinn & Juanes 2009).

Here, we study the post-injection migration of a CO2 plume driven by groundwater
flow in a tilted aquifer, including capillary trapping. As in Juanes & MacMinn (2008)
and Juanes et al. (2010), we account for the tongued shape of the plume at the end
of the injection period because this serves as the initial condition for post-injection
migration. We confirm that the buoyant spreading term has a negligible effect on the
long-time evolution of the plume (Juanes & MacMinn 2008; Hesse et al. 2008; Juanes
et al. 2010), and we derive a complete analytical solution to the migration equation
in the hyperbolic limit. We study the behaviour of the solution in different regions
of the parameter space in terms of the storage efficiency, a macroscopic measure of
plume migration related to the ultimate migration distance. In a future study we
shall incorporate dissolution into the migration equation and study the importance of
dissolution relative to capillary trapping, as well as the impact of dissolution on the
storage efficiency. In Juanes et al. (2010) and Szulczewski & Juanes (2009) we show
how these results can be used for basin-specific capacity estimation.
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Figure 1. Injection of CO2 into a saline aquifer at the basin scale. (a) From a bird’s-eye view,
the plumes from the individual wells merge together as the CO2 spreads away from the well
array (black dots). (b) In cross-section, the CO2 is shown in grey, the groundwater in white,
and the caprock as a thick line. Arrows indicate the direction of groundwater flow. Typical
horizontal and vertical scales are indicated. Note that the vertical scale of the aquifer is greatly
exaggerated.

2. Theoretical model for CO2 migration
We are interested in large CO2 storage projects, and therefore in the evolution of the

CO2 plume at the geologic basin scale; a schematic of the basin-scale geologic setting
is shown in figure 1. We assume that the CO2 is injected simultaneously through a
linear arrangement of a large number of wells, known as a ‘line drive’ well array, as
proposed by Nicot (2008). While the injection from a single well is radially outwards,
the plumes from neighbouring wells will merge as the radius of the plumes approaches
the inter-well spacing. We model the single resulting plume as two-dimensional in the
x–z plane, with some width, W , in the y-direction equal to the length of the well
array. While a two-dimensional model cannot capture three-dimensional flow effects
such as groundwater or counter-current flow around the plume, or buoyant spreading
in the lateral direction, the assumption of line symmetry is justified here when the
well array is long relative to the typical extent of the CO2 plume in the x-direction.
Further, we are interested in scenarios where the volume of CO2 injected is large,
so that the typical extent of the plume in the x-direction is much larger than the
thickness of the formation into which we inject.

We take the aquifer to be homogeneous, with an arbitrary tilt relative to the
horizontal and a net groundwater through-flow to the right. We take the fluids to
be incompressible and Newtonian, with constant and uniform properties within the
aquifer. The fraction of pore space occupied by trapped or residual CO2 after the
bulk is displaced is the residual gas saturation, Sgr . Similarly, some fraction of pore
space may be occupied by immobile groundwater; this is known as the connate water
saturation, Swc.

We employ a sharp-interface approximation, neglecting the width of typical
gradients in saturation (i.e. the capillary transition zone or ‘fringe’) compared to
typical length scales in the horizontal and vertical directions, and we further neglect
the capillary pressure compared to typical hydrostatic and viscous pressure drops (see
e.g. Bear 1972; Yortsos 1995).

In accordance with the sharp-interface approximation, we divide the domain into
three regions of uniform CO2 and groundwater saturation with sharp interfaces
corresponding to saturation discontinuities. As illustrated in figure 2, region 1 is
the mobile plume of CO2, containing mobile CO2 and a saturation Swc of connate
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Figure 2. A schematic of the plume during post-injection migration, as the mobile CO2 is
pushed to the right by a combination of groundwater flow and aquifer slope, leaving trapped
CO2 in its wake. We divide the domain into three regions of uniform CO2 and groundwater
saturation, separated by sharp interfaces corresponding to saturation discontinuities. Region 1
(dark grey) has a saturation 1 − Swc of mobile CO2 and a saturation Swc of connate
groundwater; region 2 (light grey) has a saturation Sgr of trapped CO2 and a saturation
1 − Sgr of mobile groundwater; region 3 (white) contains only groundwater. The aquifer has
a total thickness H , and the thickness of region i, i = 1, 2, 3, is denoted hi(x, t). Groundwater
flows naturally through the aquifer from left to right with velocity Un; the aquifer has
permeability k and porosity φ, as well as an arbitrary angle of tilt, ϑ , measured anticlockwise
from the direction of gravity.

groundwater; region 2 is the region from which the plume has receded, containing
mobile groundwater and a saturation Sgr of trapped CO2; and region 3 contains
mobile groundwater and no CO2.

We make the Dupuit or ‘vertical equilibrium’ approximation and neglect the vertical
flow velocity compared to the horizontal flow velocity. This is justified when the
characteristic vertical length scale is much smaller than the characteristic horizontal
one (i.e. H/Lc � 1). This is generally the case for aquifers, which are typically very
thin compared to their horizontal dimensions (see, again, Bear 1972; Yortsos 1995),
and is further justified here by the fact that we consider scenarios where the volume
of CO2 injected is large, so that the typical extent of the plume in the x-direction is
much larger than the thickness of the formation into which we inject.

With these assumptions, we can write the Darcy velocity for each phase in each
region and relate them through conservation of mass, accounting carefully for the
residual fluid that crosses each interface (Hesse et al. 2006, 2008). The resulting
migration equation is

R̃ ∂h1

∂t
+

[
Q

(1 − Swc)φ

]
∂f

∂x
+ κ sinϑ

∂

∂x

[
(1 − f ) h1

]
− κ cosϑ

∂

∂x

[
(1 − f ) h1

∂h1

∂x

]
= 0. (2.1)

The discontinuous accumulation coefficient R̃ captures the volume loss due to
capillary trapping by taking different values for drainage (h1 increasing) and
imbibition (h1 decreasing),

R̃ =

{
1, if ∂h1/∂t > 0 and h2 = 0,

1 − Γ, otherwise.
(2.2)

The parameter Γ = Sgr/(1 − Swc) is the capillary-trapping number, which measures
the fraction of CO2 that is left behind at the imbibition front and takes a constant
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value between zero (no trapping) and one. A net volume rate Q of fluid flows through
the aquifer from left to right. The nonlinear function f (h1, h2, h3) is given by

f (h1, h2, h3) =
λ1h1

λ1h1 + λ2h2 + λ3h3

. (2.3)

The thicknesses, hi , are related through the requirement that they sum to the total
aquifer thickness, h1 +h2 + h3 = H , and through the relationship

∂h1

∂t
=

⎧⎪⎪⎨⎪⎪⎩
−∂h3

∂t
, if ∂h1/∂t > 0 and h2 = 0,

−∂h2

∂t
, otherwise,

(2.4)

which reflects the difference between imbibition, when CO2 is trapped, and drainage,
when it is not. The characteristic velocity of buoyancy-driven flow in this system is

κ =
�ρgkλ1

(1 − Swc)φ
, (2.5)

where �ρ = ρw − ρg is the density difference between the groundwater and the CO2,
g is the force per unit mass due to gravity and k and φ are the intrinsic permeability
and porosity of the aquifer, respectively. We denote the mobility of the mobile phase
in region i, i = 1, 2, 3, by λi = kri/µi , where kri and µi are the relative permeability
to that phase and the viscosity of that phase, respectively.

We expect the relative permeability to groundwater in region 2 to be less than
that in region 3 because of the presence of the trapped gas there. In order to make
analytical progress, however, we explicitly neglect this effect and assume that λ2 = λ3.
This simplifies (2.1) substantially because the distinction between regions 2 and 3
no longer has physical significance, and the nonlinear function f (h1, h2, h3) can be
rewritten as a function of h1 only,

f (h1) =
λ1h1

λ1h1 + λ3(H − h1)
. (2.6)

Note that Juanes & MacMinn (2008) solve (2.1) for ϑ =0 without making this
approximation. With (2.6), (2.1) is of the same form as that presented in Bear (1972,
p. 535, equation (9.5.64)) when Γ = 0 (no capillary trapping), and agrees with that of
Hesse et al. (2008) when Q =0 (no flow) and with that of Juanes et al. (2010) when
ϑ =0 (no slope). We write (2.1) in dimensionless form,

R̃ ∂η

∂τ
+ Nf

∂f

∂ξ
+ Ns

∂

∂ξ

[
(1 − f ) η

]
− Ng

∂

∂ξ

[
(1 − f ) η

∂η

∂ξ

]
= 0, (2.7)

where η = h1/H , τ = t/Tc and ξ = x/Lc, and with

R̃ =

{
1, if ∂η/∂τ > 0,

1 − Γ, if ∂η/∂τ < 0,
(2.8)

and

f (η) =
Mη

Mη + (1 − η)
, (2.9)

where M = λ1/λ3 is the mobility ratio. We choose the characteristic length scale to be
the length of a rectangle of aquifer of height H and containing a volume QiTi/2 of
CO2, Lc = QiTi/2(1 − Swc)φH , where Qi is the volume rate of injection per unit length
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Figure 3. Numerical solutions to (2.7) for the shape of the plume during post-injection
migration at τ = 2.25 for M = 5, Γ = 0.3, Nf = 1, Ns = 0.5 and Ng = 0, 0.1, 1 and 10.
Qualitatively, plume migration – in particular, the prominent gravity tongue, the position
of the leading edge, and the shape of the profile of trapped gas – is little affected by
non-negligible values of Ng compared to Nf or Ns . In practice, the value of the mobility ratio
M is larger (usually between 10 and 20), and the impact of the spreading term is even smaller.

of well array during the injection period and Ti is the duration of the injection period.
The characteristic time scale Tc is arbitrary. The constants Nf , Ns and Ng are given by

Nf =
Tc

Ti

Q

Qi/2
, Ns =

Tc

Lc

κ sinϑ, Ng =
Tc

Lc

κ cos ϑ
H

Lc

. (2.10)

Without loss of generality, we choose Nf � 0: thus groundwater flow is always to the
right by convention. Aquifer slope can be either positive (Ns > 0) for anticlockwise
aquifer tilt or negative (Ns < 0) for clockwise aquifer tilt.

Equation (2.7) consists of a conditional accumulation term balanced by three
nonlinear flux terms. The discontinuous nature of the accumulation term captures the
effect of capillary trapping. The flux terms have the following physical interpretations:
the first is advective in nature, capturing the motion of the CO2 due to groundwater
flow through the aquifer; the second is also advective, capturing the motion of the
CO2 due to the tilt of the aquifer; and the third is diffusive, capturing the upwards
spreading of the CO2 against the caprock due to buoyancy.

2.1. Hyperbolic limit

In order to simplify the solution of (2.7), we neglect the diffusive spreading term.
This is justified because the essential features of the plume shape and migration
are dominated by advective effects and capillary trapping, even for non-negligible
values of Ng compared to Nf and Ns (Hesse et al. 2008; Juanes & MacMinn 2008;
Juanes et al. 2010). This is illustrated qualitatively in figure 3, where we solve (2.7)
numerically for several values of Ng .

Neglecting the spreading term, we rewrite (2.7) as

∂η

∂τ
+

1

R̃
∂

∂ξ
F (η) = 0, (2.11)

with flux function F (η) given by

F (η) = Nf f + Ns(1 − f )η. (2.12)

Equation (2.11) is a first-order autonomous hyperbolic conservation law. We next
solve it analytically, accounting for the shape of the plume at the end of injection. To
aid in the derivation, we define a scaled and shifted plume thickness g(ξ, τ ),

g = (M − 1)η + 1, (2.13)

that re-maps plume thicknesses 0 � η � 1 to 1 � g � M. We also define a
corresponding flux function G,

G(g) = (M − 1)F, (2.14)
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so that we can rewrite (2.11),

∂g

∂τ
+

1

R̃
∂

∂ξ
G(g) = 0. (2.15)

The solution to this equation depends on three dimensionless parameters: M, Γ and
the ratio Ns/Nf .

2.2. The injection period

The solution of (2.15) for the injection period has been discussed by Nordbotten et al.
(2005) and Nordbotten & Celia (2006) for the radial geometry and, in a different
context, by Verdon & Woods (2007) for the planar geometry. Here, we re-derive the
latter in the context of CO2 injection. During injection, we assume that a constant
volume rate, Qi , of CO2 per unit length of the line-drive well array is pumped into
the aquifer. Injection typically dominates the flow, and we therefore neglect natural
groundwater flow and slope relative to injection, Qi � UnH and Ns/Nf � 1. We then
assume that the flow rate Qi is split evenly between the left and right sides of the
injection well, and therefore that the plume shape is symmetric across the injection
well. Groundwater flow and aquifer slope would lead to some asymmetry in the plume
shape, but we expect this to be negligible due to the dominance of injection.

Considering now the right-hand side of the well only, we model the well as a line
source located at ξ = 0 and with strength Qi/2H per unit vertical length. We take the
characteristic time scale to be the duration of injection so that τ = 1 is the end of the
injection period and Nf = 1.

The solution to a hyperbolic conservation law such as (2.15) is a collection of waves
travelling through space–time at constant speed. These waves behave independently
of one another unless they collide. The speed of each wave is determined by its

thickness, g, and is given by G′(g)/R̃ where G′ =dG/dg. The flux function, G(g), for
the right front during injection is concave down and strictly increasing, so the right
front evolves as a ‘rarefaction’: all waves travel to the right and the front is stretched
horizontally. Because all waves correspond to CO2 displacing groundwater to the

right, all waves are in drainage with R̃ = 1.
The plume shape is symmetric across the injection well because we have neglected

groundwater flow and slope relative to injection, so the left front, ξL, is simply the
reflection of the right front, ξR ,

ξL(g, τ ) = −
(

M
g2

)
τ, ξR(g, τ ) =

(
M
g2

)
τ. (2.16)

Figure 4 shows the characteristics and the plume shape at several times during the
injection period, which ends at τ = 1. The shape of the plume at the end of the
injection period serves as the initial condition for post-injection migration (Juanes &
MacMinn 2008; MacMinn & Juanes 2009; Juanes et al. 2010).

3. Post-injection migration
Once injection has ended, the plume migrates due to both slope and groundwater

flow, and is subject to residual trapping. We solve (2.15) for post-injection migration
using the method of characteristics. The post-injection problem is more difficult than
the injection problem because of the complex interactions between slope, groundwater
flow and capillary trapping: waves collide, and we divide the analysis into parts based
on the types of collisions that occur.
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Figure 4. (Colour online) During injection with M = 2, (a) the evolution of the plume in
characteristic space and (b)–(d ) the shape of the plume (grey) at τ = 0.1, 0.5 and 1, respectively.
In (a), we show several waves of the left and right fronts in red and green, respectively; the
innermost and outermost waves on each front correspond to g = M and g = 1 (η = 1 and
η = 0), respectively.
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Figure 5. The shape of the flux function for (a) flow only (Ns = 0, Nf = 1) for M = 2, 5, 10, 20
and 50; (b) positive slope only (Ns = 1, Nf = 0) for M = 2, 5, 10, 20 and 50 and (c) combined
flow and slope for M =2, Nf = 1 and Ns varying from −4 to 4.

The characteristic time scale in post-injection is arbitrary, but in order to maintain
a continuous time variable we redefine τ in post-injection as

τ = 1 +
t − Ti

Tc

, (3.1)

so that the end of injection, t = Ti , always corresponds to τ = 1.
As during injection, the velocity of each wave of the left and right fronts is given

by the corresponding derivative of the flux function, G′(g), scaled by R̃. The direction
in which each wave travels (i.e. to the left or to the right) is determined by the sign

of G′(g), and this in turn sets the appropriate value of R̃ for each wave: waves
of the left front moving to the left correspond to CO2-displacing groundwater, and
are then drainage waves; waves of the left front moving to the right correspond
to groundwater displacing CO2, and are imbibition waves. Waves of the right front
moving to the left or to the right are similarly imbibition waves or drainage waves,
respectively.

We plot the flux functions for flow only, for slope only, and for combined flow
and slope in figure 5. The flux function for flow only is concave down and strictly
increasing – in other words, we say that flow pushes all waves to the right. In contrast,
the flux function for positive slope only is concave down with a local maximum at
some η = ηs: waves with η <ηs move up-slope, the wave with η = ηs is stationary and
waves with η > ηs move down-slope (Hesse et al. 2008). The flux function for negative
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slope has the opposite behaviour. We take the three limiting cases of negative slope
only, flow only, and positive slope only to be three discrete points on the continuum
of possible values of the parameter Ns/Nf : these are Ns/Nf → −∞, Ns/Nf =0 and
Ns/Nf → ∞, respectively. To understand qualitatively the effect of combined flow and
slope, consider a flow-only system where all waves move to the right. Adding some
amount of positive slope will ‘speed’ the upper portion of the plume and ‘slow’ the
lower portion; if the amount of positive slope is large enough, a stationary point will
be introduced at some η = ηs and waves with η >ηs will move to the left. Adding
negative slope to a flow-only system will accomplish the opposite, slowing the upper
portion of the plume and speeding the lower portion; if the amount of negative slope
is large enough, a stationary point will be introduced at some η = ηs and waves with
η <ηs will move to the left.

To understand this behaviour quantitatively, consider the derivative of the flux
function,

G′ =
dG

dg
= −

[(
1

M − 1

)
Ns

]
+

[
MNf +

(
M

M − 1

)
Ns

]
1

g2
, (3.2)

which changes sign once at stationary point g = gs given by

gs =
√

M(M − 1)Nf /Ns + M. (3.3)

From (3.3), gs exists on the interval 1 � g � M only for Ns/Nf � −M or 1 � Ns/Nf .
Accordingly, the continuum of possible values of the ratio Ns/Nf can be divided into
three intervals based on the nature of the resulting plume migration. For Ns/Nf � −M,
the flux function is concave up and has a local minimum, so that G′ vanishes at
g = gs and is negative for g <gs and positive for g > gs: we refer to this interval as
‘negative slope with weak flow’. For −M < Ns/Nf < 1, the flux function is concave
up for Ns/Nf < −(M − 1), linear for Ns/Nf = −(M − 1) and concave down for
Ns/Nf > − (M − 1), and in all cases strictly increasing so that G′ is positive: we refer
to this interval as ‘flow with weak slope’. For 1 � Ns/Nf , the flux function is concave
down and has a local maximum, so that G′ vanishes at g = gs and is positive for
g <gs and negative for g >gs: we refer to this interval as ‘positive slope with weak
flow’. The flux functions and the resulting plume motion for these three intervals are
illustrated in figure 6.

3.1. Flow with weak slope

We consider −M <Ns/Nf < 1, for which G′ is strictly positive. Starting from the

end-of-injection shape, all waves propagate to the right at speed G′(g)/R̃ until two

or more waves collide. The right front is a drainage front with R̃ = 1 and the left

front is an imbibition front with R̃ = (1 − Γ ). Because of this, a given wave on the
left front travels faster than the corresponding wave on the right front.

As the plume migrates, one of the two fronts will be compacted and the other
will be stretched. If the flux function is concave up (Ns/Nf < −(M − 1)), waves for
larger values of g will travel faster than waves for smaller values and the left front
will be stretched as the right front is compacted; if the flux function is concave down
(Ns/Nf > −(M − 1)), waves for larger values of g will travel more slowly than waves
for smaller values and the left front will be compacted as the right front is stretched.
In the particular case when the flux function is a straight line (Ns/Nf = −(M − 1)),
all waves on each front move at the same speed and the fronts will not change shape
as they travel.
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Figure 6. The shape of the flux function and the resulting plume motion for (a) negative
slope with weak flow, (b) flow with weak slope and (c) positive slope with weak flow for M = 2.
The direction of Ns/Nf increasing is indicated. Note that the curvature of the flux function
changes sign at Ns/Nf = −(M − 1) in the flow-with-weak-slope interval.
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Figure 7. (Colour online) A shock forms when a portion of a front is compressed into a
discontinuity. Here (M =2, Γ = 0.5, Nf = 1, Ns = 0.5), the entire left front becomes a shock
as (a) the characteristics collide at a single point. The shapes of the plume at (b) the end of
injection, (c) an intermediate time and (d ) the time of shock formation are also shown.

It is possible that the compacting front will eventually become a discontinuity or
‘shock’. Shocks are a common feature of nonlinear hyperbolic conservation laws.
The formation of a shock corresponds to multiple waves meeting at a single point
and thereafter travelling together through space–time. The formation of a shock is
illustrated in figure 7. It is also possible that a wave from the left front will catch
the corresponding wave from the right front, meaning that all of the CO2 in between
has been trapped. When this occurs, we refer to the point of intersection of the left
and right fronts as a ‘peak’. The formation of a peak is illustrated in figure 8. Peak
formation is unusual in that the collision of two waves at a peak corresponds to
the end of those characteristics in space–time: those two waves cease to exist. Peak
formation is possible here because capillary trapping causes imbibition waves to travel
faster than drainage waves.

The formation of a shock or peak leads to a fundamental change in the migration
behaviour, so we must determine when and where these collisions occur. To do so, we



340 C. W. MacMinn, M. L. Szulczewski and R. Juanes

4

(a)

(d)

(c)

(b)

3

2
τ

1

0
–2 0 2 4 6

ξ

–2 0 2 4 6

ξ

Figure 8. (Colour online) A peak forms when the left and right fronts touch, i.e. when all of
the CO2 between is trapped. Here (M =2, Γ = 0.5, Nf = 1, Ns = −0.8), a peak forms at the
bottom of the plume as (a) the two innermost characteristics collide. The shapes of the plume
at (b) the end of injection, (c) an intermediate time and (d ) the time of peak formation are
also shown.
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Figure 9. In order to determine when and where collisions occur, we examine (a) the positions
of four key points: ξLL and ξLR are the left-most and right-most points, respectively, on the
left front, and ξRL and ξRR are the left-most and right-most points on the right front. The
mobile CO2 is shown in dark grey, the region with trapped gas in light grey. We can see that
(b) a shock forms on the left when point ξLL collides with point ξRR , or that a peak forms
(c) when point ξLR collides with point ξRL. It is also possible for a shock to form on the right
when point ξRL collides with point ξRR (see the discussion of cases 4 and 5 in §§ 3.1.4 and
3.1.5).

examine the positions of four key points: these are here the left-most and right-most
points on each front, as shown in figure 9. A shock or peak will form when any two
key points collide. The positions of these key points are

ξLL(τ ) = −M +
1

1 − Γ
(MNf + Ns)(τ − 1), (3.4a)

ξLR(τ ) = − 1

M +
1

1 − Γ

(
Nf − Ns

M

)
(τ − 1), (3.4b)

ξRL(τ ) =
1

M +

(
Nf − Ns

M

)
(τ − 1), (3.4c)

ξRR(τ ) = M + (MNf + Ns)(τ − 1), (3.4d )
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Figure 10. We divide the flow-with-weak-slope interval into five cases by comparing the
collision times from (3.5) with one another. Note that case 5 exists only if M <

√
2/Γ − 1,

which is typically not the case; otherwise, case 4 extends to −M. The case of flow only studied
by Juanes & MacMinn (2008) and Juanes et al. (2010) is within case 1.

where ξLL and ξLR are the left-most and right-most points, respectively, on the left
front and ξRL and ξRR are the left-most and right-most points on the right front.
These expressions remain valid until the first collision occurs.

We use the notation ξαβ → ξγ δ to indicate the collision of the former key point with
the latter. Because all points move to the right in this interval, it is clear that the first
collision must be one of ξLL → ξLR , ξLR → ξRL or ξRL → ξRR . The times at which these
three collisions would occur are readily derived from (3.4):

τLR
LL = 1 +

(1 − Γ )(M − 1)

(M − 1)Nf + Ns

, (3.5a)

τRL
LR = 1 +

2(1 − Γ )

Γ (Nf − Ns)
, (3.5b)

τRR
RL = 1 − (M − 1)

(M − 1)Nf + Ns

, (3.5c)

where τ
γ δ
αβ is the time corresponding to ξαβ → ξγ δ . By comparing these collision times

with one another, we can divide the flow-with-weak-slope interval, −M <Ns/Nf < 1,
into five cases based on the order in which collisions occur, as illustrated in figure 10.

3.1.1. Case 1

The development of case 1 is a simple generalization of the flow-only case. The
flux function is concave down, so the left front is compacted while the right front is
stretched. The first collision is ξLL → ξLR , which occurs at position

ξLR
LL =

−Ns/Nf

(M − 1) + Ns/Nf

(3.6)

and at time τLR
LL from (3.5). When this occurs, the entire left front becomes a shock

that propagates to the right at a constant speed until it collides with ξRL. The speed of
the shock, σ , during this period is evaluated from the Rankine–Hugoniot condition
(see e.g. Lax 1972),

σ =
1

1 − Γ

�G�

�g�
=

Nf

1 − Γ
, (3.7)
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where the notation �◦� indicates the difference or ‘jump’ in the indicated quantity
across the shock. The shock collides with ξRL at position

ξRL
σ =

(2 − Γ ) − (1 − Γ )Ns/Nf

(M − (1 − Γ )) + (1 − Γ )Ns/Nf

(3.8)

and time

τRL
σ = 1 +

(1 − Γ )(M + 1)

(M − (1 − Γ ))Nf + (1 − Γ )Ns

. (3.9)

Thereafter, the shock collides continuously with the right front. We develop a
differential equation for the shock height by posing the collision of the shock with
an arbitrary wave g∗ on the right front at some time τ ∗. The position of the shock at
time τ ∗ can be written

ξσ (τ ∗) = ξRL
σ +

∫ τ ∗

τRL
σ

σ (τ ) dτ, (3.10)

where the shock speed at any time is evaluated from the Rankine–Hugoniot condition
for the instantaneous shock height. The position of the wave g∗ on the right front
prior to collision with the shock can be written

ξg∗(τ ∗) =
M
g∗2

+ G′(g∗)(τ ∗ − 1). (3.11)

Equating ξσ (τ ∗) with ξg∗(τ ∗), since these must be equal by the definition of τ ∗ and g∗,
we differentiate the resulting expression with respect to τ ∗ and re-arrange to find the
ordinary differential equation (ODE) for the shock height as a function of time,

dg∗

dτ ∗ =
σ (g∗) − G′(g∗)

−2M/g∗3 + G′′(g∗)(τ ∗ − 1)
. (3.12)

Equation (3.12) is separable,∫ gσ

M

−2M
σ (g∗) + G′(g∗)

dg∗

g∗3
=

∫ τ

τRL
σ

dτ ∗

(Nf + Ns/(M − 1))(τ ∗ − 1) + 1
, (3.13)

where gσ is the height of the shock at time τ , and has implicit solution

I(gσ ) − I(M) = ln

[
(Nf + Ns/(M − 1))(τ − 1) + 1

(Nf + Ns/(M − 1))
(
τRL
σ − 1

)
+ 1

]
(3.14)

where the integral I(g) is given by

I(g) = ln

[
(1 − Γ )g2

(1 − Γ ) − g + BΓ g2

]
+ 2A atan

[
A(2BΓ g − 1)

]
, (3.15)

with constants A and B ,

A =
1√

4BΓ (1 − Γ ) − 1
, B =

Ns/Nf

M(M − 1) + MNs/Nf

. (3.16)

We now have an implicit analytical relationship for the shock height as a function of
time, and the plume evolves accordingly until gσ → 1 when the shock catches ξRR , at
which point the plume vanishes. The complete evolution of the plume for case 1 is
shown in figure 11.
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Figure 11. (Colour online) Post-injection migration for case 1 with M = 2, Γ = 0.5, Nf = 1
and Ns = 0.5: (a) the evolution of the plume in characteristic space with waves of the left and
right fronts in red and green, respectively, and the shock path in blue; (b)–(f ) the shape of the
plume at several times during migration, with mobile CO2 in dark grey, the region containing
trapped CO2 in light grey and groundwater in white.

3.1.2. Case 2

In case 2, the flux function remains concave down so that the left front is again
compacted as the right front is stretched, but ξLR → ξRL now occurs before ξLL → ξLR

and a peak forms. This occurs at position

ξRL
LR =

1

M

(
2

Γ
− 1

)
(3.17)

and time

τRL
LR = 1 +

2(1 − Γ )

Γ (Nf − Ns)
. (3.18)

The height of the peak gp as a function of time is simply the height at which the left
and right fronts intersect,

gp =

√
M

[
(M − 1)Nf /Ns + 1

]
− 2M(M − 1)(1 − Γ )

Γ Ns(τ − 1)
. (3.19)

The left and right fronts, meeting at the peak, then continue to compact and stretch,
respectively, until the left front compacts into a shock, which occurs at position
ξLR
p = ξLR

LL from (3.4) and time τLR
p = τLR

LL from (3.5). The height of the peak when this
occurs is

gLR
p =

√
M

[
(M − 1)Nf /Ns + 1

](
1 − 2

Γ

)
. (3.20)

This shock then travels to the right, colliding continuously with the right front until
the plume vanishes. The evolution of the shock during this final period is analogous
to the final period of evolution from case 1, but beginning at a different position and
time, and with a different initial shock height. The complete evolution of the plume
for case 2 is shown in figure 12.

3.1.3. Case 3

In case 3, the first collision is ξLR → ξRL, forming a peak, and the second is ξRR
LL ,

at which point the plume is completely trapped. This occurs before either front is
compressed into a shock; as a result, the expressions for the position and time at
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Figure 12. (Colour online) Post-injection migration for case 2 with M = 2, Γ = 0.5, Nf = 1
and Ns = −0.75: (a) the evolution of the plume in characteristic space with waves of the left
and right fronts in red and green, respectively, and the peak and shock paths in blue; (b)–(f )
the shape of the plume at several times during migration, with mobile CO2 in dark grey, the
region containing trapped CO2 in light grey and groundwater in white.
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Figure 13. (Colour online) Post-injection migration for case 3 with M = 2, Γ = 0.5, Nf = 1
and Ns = −1.2: (a) the evolution of the plume in characteristic space with waves of the left
and right fronts in red and green, respectively, and the peak path in blue; (b)–(e) the shape
of the plume at several times during migration, with mobile CO2 in dark grey, the region
containing trapped CO2 in light grey and groundwater in white.

which the plume vanishes are particularly simple, and are given by

ξRR
LL = M

(
2

Γ
− 1

)
(3.21)

and

τRR
LL = 1 +

2M(1 − Γ )

Γ (MNf + Ns)
, (3.22)

respectively. The complete evolution of the plume for case 3 is shown in figure 13.
Note that the curvature of the flux function changes sign at Ns/Nf = −(M − 1), for
which value the flux function is a straight line – this is always within case 3.

3.1.4. Case 4

In case 4, the flux function is now concave up and the left front is stretched, while
the right front is compacted – in other words, we now expect shocks to form on the
right. The first collision is again ξLR → ξRL, forming a peak. The second collision is
ξp → ξRR , at which point the right front has been compacted into a shock. The shock
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Figure 14. (Colour online) Post-injection migration for case 4 with M = 2, Γ = 0.5, Nf = 1
and Ns = −1.5: (a) the evolution of the plume in characteristic space with waves of the left
and right fronts in red and green, respectively, and the peak and shock paths in blue; (b)–(f )
the shape of the plume at several times during migration, with mobile CO2 in dark grey, the
region containing trapped CO2 in light grey and groundwater in white.

then propagates slowly to the right, colliding continuously with the left front as the
latter overtakes it. The ODE for the shock height as a function of time differs only
slightly from that of case 1: the construction is analogous and the result can again
be integrated analytically. The complete evolution of the plume for case 4 is shown
in figure 14.

3.1.5. Case 5

In case 5, the flux function remains concave up and the first collision is ξRL → ξRR

as the right front is compacted into a shock. The shock then evolves in the same
manner as in case 4 until the plume is completely trapped. This case exists only if
M <

√
2/Γ − 1, which is generally not the case for typical values of M and Γ for

the CO2 problem, and otherwise case 4 extends to Ns/Nf = −M. Note that for the
particular case of Ns/Nf = −M the speed of the points ξLL and ξRR is exactly 0; the
plume thins as the shock travels slowly to the right, but the shock height approaches
zero asymptotically and the plume never becomes fully trapped, although in reality it
would be arrested by capillarity as it becomes very thin.

3.2. Negative slope with weak flow

When Ns/Nf � −M, the flux function is concave up and has a local minimum at some
g = gs . The wave on each front corresponding to g = gs is stationary and does not
move from its end-of-injection position; we must introduce these as two additional
key points,

ξLS(τ ) =
−1

(M − 1)Nf /Ns + 1
, (3.23a)

ξRS(τ ) =
1

(M − 1)Nf /Ns + 1
, (3.23b)

where ξLS and ξRS are the stationary points on the left and right fronts, respectively.
Waves corresponding to g < gs travel to the left and those corresponding to g >gs

travel to the right; i.e. the ‘upper’ portion of the plume travels up-slope, against the
flow, and the ‘lower’ portion of the plume travels down-slope, with the flow. As in
cases 4 and 5, the left front will be stretched while the right front is compacted. Note
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that unlike all of the previous cases, the net motion of the plume in this interval is
now to the left, or up-slope.

The positions of the other four key points are

ξLL(τ ) = −M + (MNf + Ns)(τ − 1), (3.24a)

ξLR(τ ) = − 1

M +
1

1 − Γ

(
Nf − Ns

M

)
(τ − 1), (3.24b)

ξRL(τ ) =
1

M +

(
Nf − Ns

M

)
(τ − 1), (3.24c)

ξRR(τ ) = M +
1

1 − Γ
(MNf + Ns)(τ − 1). (3.24d )

The first collision in this interval must be one of three possibilities: ξRR → ξRS ,
ξRL → ξRS or ξLR → ξRL. Ultimately, a shock must form at ξRS because it is stationary:
this can either happen as the first collision (ξRR → ξRS or ξRL → ξRS) or, if ξLR → ξRL

occurs first, as the second. Once the shock forms, it must eventually collide with the
peak if one has formed, or with ξRL and then with ξLR if one has not. It must then
collide with ξLS and ultimately with ξLL. The shock may change direction during its
evolution, switching from drainage to imbibition or vice versa, but this is at all times
consistent with the Rankine–Hugoniot condition.

In the flow-with-weak-slope interval, the formation of the shock (if a shock forms)
is always the last collision. This allowed us to examine the behaviour preceding the
shock formation in great detail, and to divide the interval into cases accordingly. In
the negative-slope-with-weak-flow interval, the formation of the shock is always one
of the first two collisions and it is no longer tractable to determine the order of
collisions in an explicit fashion. Instead, we implement a decision-tree algorithm to
handle each stage of the plume evolution in sequence. The algorithm evaluates and
compares the times at which possible collisions would occur, and evolves the plume
accordingly: this process is entirely algebraic, consisting only of the evaluation of
complex and sometimes implicit expressions.

We illustrate one example of the evolution of the plume in this interval in figure 15;
the order of collisions in this example is ξRR → ξRS forming a shock, ξRL → ξσ , ξLR → ξσ ,
ξσ → ξLS and ξσ → ξLL.

3.3. Positive slope with weak flow

When 1 � Ns/Nf , the flux function is concave down and has a local maximum at
some g = gs . The waves corresponding to g = gs are again stationary, and we again
have three key points on each front. Waves corresponding to g <gs now travel to
the right and those corresponding to g >gs travel to the left; i.e.the upper portion of
the plume travels up-slope, with the flow, and the lower portion of the plume travels
down-slope, against the flow. As in cases 1 and 2 of the flow-with-weak-slope interval,
the left front will be compacted, while the right front is stretched. Additionally, the
net motion of the plume is again to the right.

The evolution of the plume is analogous to that in the negative-slope-with-weak
flow interval: the first collision must be one of three possibilities: ξLL → ξLS , ξLR → ξLS

or ξRL → ξLR . Ultimately, a shock must form at ξLS because it is stationary: this can
either happen as the first collision (ξLL → ξLS or ξLR → ξLS) or, if ξRL → ξLR occurs
first, as the second. Once the shock forms, it must eventually collide with the peak if
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Figure 15. (Colour online) Post-injection migration in the negative-slope-with-weak-flow
interval with M = 2, Γ = 0.5, Nf =1 and Ns = −4: (a) the evolution of the plume in
characteristic space with waves of the left and right fronts in red and green, respectively,
and the peak and shock paths in blue; (b)–(f ) the shape of the plume at several times during
migration, with mobile CO2 in dark grey, the region containing trapped CO2 in light grey and
groundwater in white.
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Figure 16. (Colour online) Post-injection migration in the positive-slope-with-weak-flow
interval with M = 2, Γ = 0.5, Nf =1 and Ns = 4: (a) the evolution of the plume in characteristic
space with waves of the left and right fronts in red and green, respectively, and the peak and
shock paths in blue; (b)–(f ) the shape of the plume at several times during migration, with
mobile CO2 in dark grey, the region containing trapped CO2 in light grey and groundwater in
white.

one has formed, or with ξLR and then with ξRL if one has not. Then it must collide
with ξRS and ultimately with ξRR . As before, it is not tractable to perform further
analysis explicitly and we instead use a decision-tree algorithm; however, as before,
the process is entirely algebraic.

We illustrate an example of the evolution of the plume in this interval in figure 16;
the order of collisions in this example is ξLL → ξLS forming a shock, ξLR → ξσ , ξσ → ξRL,
ξσ → ξRS and ξσ → ξRR .
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Figure 17. Storage efficiency, ε, as a function of Ns/Nf for several values of Γ , as indicated,
at M = 15. The black points correspond to the black points on the Ns/Nf line in figure 10.
Note that case 5 does not exist for these values of M and Γ . Case 5 does not introduce any
noteworthy features.

4. Plume footprint and storage efficiency
We are primarily interested here in macroscopic measures of the plume evolution.

One such measure is the volume of CO2 stored per unit volume of aquifer ‘used’.
This is the storage efficiency, an important metric in capacity estimation (Bachu et al.
2007). We define the storage efficiency, ε, as

ε =
VCO2

VT

=
QiTi

HLT (1 − Swc)φ
, (4.1)

where VCO2
is the volume of CO2 injected and VT is the total volume of aquifer used;

we define VT to be the total pore volume available for CO2 storage in a rectangle
of thickness H and length LT , where LT is the total extent in the x-direction of
the fully trapped CO2 plume (Juanes & MacMinn 2008; Juanes et al. 2010). Taking
ξT = LT /Lc and using Lc as defined in § 2, we have that

ε =
2

ξT

. (4.2)

The storage efficiency takes a value between 0 and Γ , and is inversely proportional
to the dimensionless plume footprint, i.e. for a given volume of CO2 injected, a larger
footprint corresponds to less efficient storage.

The storage efficiency can be readily evaluated from the solution to the migration
equation as a function of Ns/Nf , M and Γ , and this can be done quickly and
comprehensively over a large range of parameters owing to the analytical nature of
the solution. In figure 17, we plot the storage efficiency as a function of Ns/Nf for
several values of Γ .

The shape of the storage efficiency curve has several noteworthy features. The
storage efficiency drops to exactly zero at Ns/Nf = −M, although in reality plume
motion would be arrested by capillarity as the plume becomes very thin. The plateau
of highest efficiency is achieved in case 3, where the plume becomes fully trapped
before a shock forms: this case is sufficiently simple that the storage efficiency can
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be evaluated explicitly, and is given by εmax = Γ/M for all of case 3. The flow-only
efficiency (Ns/Nf =0) is also known explicitly, and is given by εf = 2Γ 2/[MΓ 2 + (2−
Γ )(M−(1−Γ ))] (Juanes & MacMinn 2008; Juanes et al. 2010). The storage efficiency
approaches its slope-only value asymptotically from above or below as Ns/Nf becomes
large or small, respectively: this quantity does not have a simple analytical expression,
but is given to very good approximation by εs = Γ 2/[0.9M + 0.49]. This collection
of expressions, used together with knowledge of the qualitative shape of the storage
efficiency curves shown in figure 17, is sufficient to quickly and easily estimate the
storage efficiency for any particular values of Ns/Nf , M and Γ .

It is clear that storage efficiency always decreases with M: this is because increasing
M strengthens the ‘tonguing’ of the plume during both injection and post-injection
migration. These long thin layers of CO2 slow residual trapping and therefore reduce
storage efficiency. Similarly, the storage efficiency always increases with Γ : this is
because more CO2 is left behind upon imbibition, and so the plume becomes fully
trapped over a shorter migration distance.

5. Conclusions
We have developed a complete solution to a hyperbolic gravity-current model

for CO2 migration in a saline aquifer due to groundwater flow and aquifer slope,
subject to residual trapping and accounting for the tongued end-of-injection plume
shape. We have shown how the solution changes with Ns/Nf , M and Γ , and also
explored the effect of these parameters on the overall storage efficiency. While the
main contribution of this model is the insight it provides into the physics of CO2

migration and trapping, we illustrate in Juanes et al. (2010) and Szulczewski & Juanes
(2009) how it can be used to develop basin-specific capacity estimates.

We find that the maximum storage efficiency is achieved for a relatively large
negative value of the parameter Ns/Nf , that is, when there is a gentle down-dip
groundwater flow. This is a non-trivial result: figure 17 shows that while the storage
efficiency is essentially the same for the slope-only, up-dip flow and flow-only cases,
a gentle down-dip flow can provide a multiple fold increase in storage efficiency.
Hydrogeological conditions leading to this interplay between slope and groundwater
flow are known to occur in many continental sedimentary basins (Garven 1995).

Because the areal footprint of the CO2 plume is very large, it is likely that the plume
would encounter faults or fractures as it migrates. While the capillary entry pressure
would prevent upwards flow in many cases, it is possible that some CO2 would
leak into overlying formations through larger fractures. Pritchard (2007), Farcas &
Woods (2009) and Woods & Farcas (2009), for example, have recently studied leakage
in some detail. The impact of leakage in all cases is found to depend strongly on
the distribution, permeability and capillary entry pressure of the fractures. These
considerations, although relevant to the problem of CO2 migration, are beyond the
scope of this study.

While we have not included the effect of CO2 dissolution here, it is well known
that CO2 is weakly soluble in groundwater, and therefore both residual CO2 and
CO2 from the mobile plume will dissolve slowly into the nearby groundwater as
the plume migrates. Because the density of groundwater increases with dissolved
CO2 content, the boundary layer of CO2-saturated groundwater near the mobile
plume is unstable. This instability eventually results in so-called convective mixing,
where plumes of dense, CO2-saturated groundwater sink away from the interface as
plumes of ‘fresh’ groundwater rise upwards. It has been shown that for a stationary
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plume of CO2, convective mixing is triggered on time scales that are short relative to
required storage times, and that it dramatically increases the rate of CO2 dissolution
compared to diffusive transport alone (Ennis-King & Paterson 2005; Riaz et al. 2006).
We expect that dissolution will have a non-negligible contribution to overall trapping.
In a future study we shall incorporate dissolution into the migration equation and
study the importance of dissolution relative to capillary trapping and the impact of
dissolution on the storage efficiency.

The work of C.W.M. was partly funded by the Martin Family Society of Fellows
for Sustainability. Additional funding was provided by the ARCO Chair in Energy
Studies, the Reed Research Fund and the US Department of Energy under grant
DE-FE0002041. This financial support is gratefully acknowledged.

REFERENCES

Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P. &

Mathiassen, O. M. 2007 CO2 storage capacity estimation: methodology and gaps. Intl
J. Greenhouse Gas Control 1 (4), 430–443.

Bachu, S., Gunter, W. D. & Perkins, E. H. 1994 Aquifer disposal of CO2: hydrodynamic and
mineral trapping. Energy Convers. Manage. 35 (4), 269–279.

Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1972 Theory of Non-Steady Filtration of Fluids
and Gases . Nedra.

Bear, J. 1972 Dynamics of Fluids in Porous Media . Elsevier (reprinted with corrections, Dover,
1988).

Dussan V, E. B. & Auzerais, F. M. 1993 Buoyancy-induced flow in porous media generated near
a drilled oil well. Part 1. The accumulation of filtrate at a horizontal impermeable boundary.
J. Fluid Mech. 254, 283–311.

Ennis-King, J. & Paterson, L. 2005 Role of convective mixing in the long-term storage of carbon
dioxide in deep saline formations. Soc. Pet. Engng J. 10 (3), 349–356.

Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a
layered permeable rock. J. Fluid Mech. 618, 349–359.

Garven, G. 1995 Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth
Planet. Sci. 23, 89–117.

Hesse, M. A., Orr Jr, F. M. & Tchelepi, H. A. 2008 Gravity currents with residual trapping.
J. Fluid Mech. 611, 35–60.

Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr Jr, F. M. 2007 Gravity currents in horizontal
porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363–383.

Hesse, M. A., Tchelepi, H. A. & Orr Jr, F. M. 2006 Scaling analysis of the migration of CO2

in saline aquifers. In SPE Annual Technical Conference and Exhibition (SPE 102796), San
Antonio, TX.

Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents
over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.

Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292,
55–69.

Juanes, R. & MacMinn, C. W. 2008 Upscaling of capillary trapping under gravity override:
application to CO2 sequestration in aquifers. In SPE/DOE Symposium on Improved Oil
Recovery (SPE 113496), Tulsa, OK, USA.

Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during
carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin
scale. Transp. Porous Media 82 (1), 19–30.

Juanes, R., Spiteri, E. J., Orr Jr, F. M. & Blunt, M. J. 2006 Impact of relative permeability
hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418.

Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J.
Engng Sci. 21 (4), 413–421.



CO2 migration. Part 1. Capillary trapping under slope and groundwater flow 351

Kumar, A., Ozah, R., Noh, M., Pope, G. A., Bryant, S., Sepehrnoori, K. & Lake, L. W. 2005
Reservoir simulation of CO2 storage in deep saline aquifers. SPE J. 10 (3), 336–348.

Lackner, K. S. 2003 Climate change: a guide to CO2 sequestration. Science 300 (5626), 1677–1678.

Lax, P. D. 1972 The formation and decay of shock waves. Amer. Math. Monthly 79 (3), 227–241.

MacMinn, C. W. & Juanes, R. 2009 Post-injection spreading and trapping of CO2 in saline aquifers:
impact of the plume shape at the end of injection. Comput. Geosci. 13 (4), 483–491.

Nicot, J.-P. 2008 Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an
example from the Texas Gulf Coast Basin. Intl J. Greenhouse Gas Control 2 (4), 582–593.

Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined
aquifers. J. Fluid Mech. 561, 307–327.

Nordbotten, J. M., Celia, M. A. & Bachu, S. 2005 Injection and storage of CO2 in deep saline
aquifers: analytical solution for CO2 plume evolution during injection. Transp. Porous Media
58 (3), 339–360.

Orr Jr, F. M. 2004 Storage of carbon dioxide in geological formations. J. Pet. Technol. (9), 90–97.

Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech.
584, 415–431.

Pruess, K. & Garcı́a, J. 2002 Multiphase flow dynamics during CO2 disposal into saline aquifers.
Environ. Geol. 42 (2–3), 282–295.

Riaz, A., Hesse, M., Tchelepi, H. A. & Orr Jr, F. M. 2006 Onset of convection in a gravitationally
unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111.

Schrag, D. P. 2007 Preparing to capture carbon. Science 315 (5813), 812–813.

Szulczewski, M. & Juanes, R. 2009 A simple but rigorous model for calculating CO2 storage
capacity in deep saline aquifers at the basin scale. Energy Procedia (Proc. GHGT-9) 1 (1),
3307–3314.

Verdon, J. & Woods, A. W. 2007 Gravity-driven reacting flows in a confined porous aquifer. J. Fluid
Mech. 588, 29–41.

Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents
through a sloping layered permeable rock. J. Fluid Mech. 618, 361–379.

Yortsos, Y. C. 1995 A theoretical analysis of vertical flow equilibrium. Transp. Porous Media 18 (2),
107–129.


